
11. NUMERICAL TECHNIQUES 

Abstract — This paper presents a 3D finite element 
formulation for a skin depth-independent shell element. It can 
describe thin conducting shells, which are multiply connected 
(i.e. which have holes), and which can be coupled with an 
external circuit. This formulation takes into account the field 
variation through depth due to skin effect. The method is first 
described. Computations of two numerical examples modelled 
with the shell element are then presented. 

I. INTRODUCTION 

Thin conducting shells have a small thickness "e" 
compared with their other dimensions. When these shells 
are meshed with volume elements, a large number of them 
is needed to avoid poor aspect ratio elements, which lead to 
numerical errors. In thin conducting shells, skin depth can 
be much thinner than thickness e, when frequency is high. In 
that case, mesh problems are increased. Shell element 
formulations which are independent in terms of skin depth 
have been developed using the magnetic scalar potential φ 
with the Boundary Integral Method in 3D by Krähenbühl 
[1], and with the 3D Finite Element Method by Mayergoyz 
[2] and by us in a previous work [3]. However, these 
formulations cannot describe multiply connected shells, i.e. 
with holes. In this paper, we extend the formulation to take 
into account such multiply connected shells and the 
coupling with an external circuit. 

The method to obtain the shell element formulation is 
first presented. Then, computations of two numerical 
examples with simple geometry and modelled with the shell 
element, are presented. 

II. NUMERICAL METHOD 

A. Typical problem to solve 

Let Ωc be the thin conducting shell, Γ1, respectively Γ2, 
the boundary between this shell Ωc and air region Ω1, 
respectively Ω2 (cf. fig. 1). Let Ωa = Ω1 ∪ Ω2 be the non 
conducting region (« a » for air). The shell can have one or 
several holes and can have terminals coupled with an 
external circuit. There can also be coils. The t0-φ magnetic 
scalar potential formulation is used in the air and in the 
conducting shell [4] [5], where t0 is the source field due 
either to the current in coils or to the current flowing in the 
shell between two of its terminals or around holes. Since 
there is a jump in the tangential component of the magnetic 
field, a double layer node surface element is needed to 
describe the shell. The nodes of each couple of nodes are at 
the same coordinates.  
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Fig. 1. Typical problem and notations 

 

B. Surface impedance boundary conditions for a shell 

The surface impedance boundary conditions for a shell 
link tangential magnetic fields h1s and h2s to electric fields 
e1 and e2 of both sides of this shell. Their expressions can 
be found in [2] [3]: 
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For a shell of thickness e with a linear material of 
permeability µ and conductivity σ, the surface impedances 

are (δ: skin depth, δ=(2/ωµσ)0.5, ω: pulsation, ω=2πf): 
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In this linear case, magnetic and electric fields have an 
exponential variation through thickness of the shell. 

C. Voltage-current relation for shells 

The voltage current relation for a bulk solid conductor, 
where uk corresponds to the voltage drop between two 
terminals of this conductor or around a hole, is written [4]: 

Ω⋅+Ω⋅= ∫∫ ΩΩ
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where j0k is the current density in the conductor with a 
current of 1 A applied between the two terminals or flowing 
around a hole, and t0k is the source magnetic field due to 
this j0k current density. For a hole, uk is set to 0 in (2). To 
take into account the conducting shell, this relation (2) is 
transformed applying the same approach as in [5], using 
surface impedance boundary conditions (1): 
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where t01sk and t02sk are the tangential source fields t0k at 
both sides of the shell. Their values are different due to the 
current density j 0k flowing in the shell. 

D. Voltage-current relation for coils and shell 

The voltage current relation for a stranded coil number k 
with voltage uk and current ik, is written [5]: 
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To take into account the conducting shell, this relation is 
transformed applying again the same approach as in [5], 
using surface impedance boundary conditions (1): 
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E. Finite element formulation for shells 

The magnetic field h is expressed as follows: 

ak0ckk0bk inii Ωφ−+= ∑∑ gradtth , (6) 

Γφ−+= ∑∑ onii mskms0ckkms0bkms gradtth . (7) 

where m in (7) corresponds to the side number of the shell 
(m∈{1,2}), i bk are the current unknowns corresponding to 
the coils and ick are the current unknowns corresponding to 
the holes of the shell (one ick unknown per hole) and to the 
couples of terminals of the shell (n-1 ick unknowns when the 
shell has n terminals). When coupling relations (3) and (5) 
to the t0-φ formulation for shells [2] [3] and using (6) and 
(7), we get a symmetrical system of equations, with 
unknowns φ, ibk and ick. The presented formulation has been 

developed in the Flux® software [6]. 

III.  NUMERICAL EXAMPLES 

The formulation presented above has been tested on 
several test-cases. Two of them are presented below. 

A. Rectangular loop shell 
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Fig. 2. Rectangular loop shell and coil 

 

 
Fig. 3. Arrows of current density (imaginary part) 

 

The first numerical example is a thin conducting 
rectangular loop shell with a “d”-shape cross section, 
submitted to the field of a coil supplied by a 50 Hz AC 
current (cf. figure 2). The loop shell is 0.6 mm thick, 
120 cm long, 80 cm large 

(resistivity = 2×10-7 Ωm, µr = 300, δ = 1.83 mm). The loop 
shell has one hole, so there is one additional unknown ick in 
the system of equations and the corresponding equation is 
relation (3). On figure 3 are depicted the arrows of the 
current density. 

B. Squared sheet iron and wire 

The second numerical example consists of a 100 kHz AC 
current source which supplies a round copper wire 
connected to a square sheet iron in which the current returns 
to the current source. The sheet iron has been described by 
the shell element formulation presented in part II (thickness 
e = 2 mm, length: 1 m, resistivity: 1.7×10-7 Ωm, µr = 500, 
δ = 29.3 µm). This sheet iron has two circular terminals 
which correspond to relation (3) in the system of equations. 
The wire is represented by a coil which is not meshed and 
corresponds to relation (5). 
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Fig. 4. Squared sheet iron and wire supplied by a current source 

 

  
Fig. 5. Isovalues of current density on top surface of sheet iron 

 

The current density is flowing in the sheet iron under the 
wire, from one terminal to the other (cf. figure 5). 
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