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Abstract — This paper presents a 3D finite element
formulation for a skin depth-independent shell elerent. It can
describe thin conducting shells, which are multiplyconnected
(i.e. which have holes), and which can be coupledittv an
external circuit. This formulation takes into accownt the field
variation through depth due to skin effect. The metod is first
described. Computations of two numerical examples adelled
with the shell element are then presented.

. INTRODUCTION

Thin conducting shells have a small thickness "e
compared with their other dimensions. When thesalsh
are meshed with volume elements, a large numbénewh
is needed to avoid poor aspect ratio elements,hnkid to
numerical errors. In thin conducting shells, skapth can
be much thinner than thickness e, when frequenhigts In
that case, mesh problems are increased. Shell eleme
formulations which are independent in terms of sképth
have been developed using the magnetic scalar tEdten
with the Boundary Integral Method in 3D by Krahehb
[1], and with the 3D Finite Element Method by Mayeyz
[2] and by us in a previous work [3]. However, thes
formulations cannot describe multiply connectedlshee.
with holes. In this paper, we extend the formulatio take
into account such multiply connected shells and the
coupling with an external circuit.

The method to obtain the shell element formulati®n
first presented. Then, computations of two numérica
examples with simple geometry and modelled withstiell
element, are presented.

Il. NUMERICAL METHOD

A. Typical problemto solve

Let Q¢ be the thin conducting shelly, respectively,,
the boundary between this shé&l. and air regionQi,
respectivelyQ, (cf. fig. 1). LetQ,=Q; 0 Q, be the non
conducting region (« a » for air). The shell camehane or
several holes and can have terminals coupled with a
external circuit. There can also be coils. T magnetic
scalar potential formulation is used in the air andhe
conducting shell [4] [5], wheréy is the source field due
either to the current in coils or to the curreoifing in the
shell between two of its terminals or around holgsice
there is a jump in the tangential component ofrtfagnetic
field, a double layer node surface element is neetde
describe the shell. The nodes of each couple césade at
the same coordinates.
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Fig. 1. Typical problem and notations

B. Surface impedance boundary conditions for a shell

The surface impedance boundary conditions for d she
link tangential magnetic fields;s andh,s to electric fields
e; ande, of both sides of this shell. Their expressions can
be found in [2] [3]:
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For a shell of thickness e with a linear materidl o
permeabilityp and conductivityo, the surface impedances
are @: skin depthp=(2/ap0)%>, i pulsation w=2rt):
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In this linear case, magnetic and electric fieldsehan
exponential variation through thickness of the Ishel
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C. Voltage-current relation for shells

The voltage current relation for a bulk solid cociy,
where y corresponds to the voltage drop between two
terminals of this conductor or around a hole, igtem [4]:
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where jox is the current density in the conductor with a
current of 1 A applied between the two terminalfl@ning
around a hole, anty is the source magnetic field due to
this jok current density. For a holey is set to 0 in (2). To
take into account the conducting shell, this relat{2) is
transformed applying the same approach as in [§hgu
surface impedance boundary conditions (1):
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wheretgsx andtgysk are the tangential source fieltlg at
both sides of the shell. Their values are diffeidund to the
current densitygx flowing in the shell.
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D. Voltage-current relation for coils and shell

The voltage current relation for a stranded coihbar k
with voltage y and current,j is written [5]:
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(4)

To take into account the conducting shell, thiatieh is
transformed applying again the same approach g5]jn
using surface impedance boundary conditions (1):

U =Ry iy +j°{[Q tok [ﬂ)dQ+L_ [tos {Z1th s~ Z1oh )
+1ozk [ﬂzzzhzs‘zuhjs)]dr

: b
u, =R, iy +J.Qt0k G?j—tdQ.
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E. Finite element formulation for shells
The magnetic fieldh is expressed as follows:
h=> intox + X icdox ~grade inQ,, (6)
s = 2 i bt amge + 21 o ams, —9rad@y, onr . (7)

where m in (7) corresponds to the side number efstiell
(mO{1,2}), ipk are the current unknowns corresponding to
the coils andg are the current unknowns corresponding to
the holes of the shell (ong iunknown per hole) and to the
couples of terminals of the shell (ngt inknowns when the
shell has n terminals). When coupling relationsgBjl (5)

to thetg-@ formulation for shells [2] [3] and using (6) and
(7), we get a symmetrical system of equations, with
unknownsy, inxk and gx. The presented formulation has been
developed in the Fi&software [6].

I1l. NUMERICAL EXAMPLES

The formulation presented above has been tested on
several test-cases. Two of them are presented below

A. Rectangular loop shell

Shell
Cross
section

The first numerical example is a thin conducting
rectangular loop shell with a “d”-shape cross secti
submitted to the field of a coil supplied by a 59 AC
current (cf. figure 2). The loop shell is 0.6 mmicky
120 cm long, 80 cm large

(resistivity = 2x10 Qm, Mr = 300,06 =1.83 mm). The loop
shell has one hole, so there is one additional envknc in
the system of equations and the corresponding iequist
relation (3). On figure 3 are depicted the arrovisthe
current density.

B. Squared sheet iron and wire

The second numerical example consists of a 100A¢lz
current source which supplies a round copper wire
connected to a square sheet iron in which the suredurns
to the current source. The sheet iron has beenideddy
the shell element formulation presented in pathickness
e =2 mm, length: 1 m, resistivity: 1.7%1om, K = 500,

0 =29.3um). This sheet iron has two circular terminals
which correspond to relation (3) in the systemapiagions.
The wire is represented by a coil which is not reedshnd
corresponds to relation (5).
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Fig. 4. Squared sheet iron and wire supplied byreeat source
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Fig. 5. Isovalues of current density on top surfaicgheet iron

The current density is flowing in the sheet irordenthe
wire, from one terminal to the other (cf. figure 5)
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